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NOTION OF AN INITIALLY POINT VORTEX IN A FLOW OF VISCOUS FLUID* 

A.B. AIRAPETOV 

Asymptotic equations and their solutions, describing the motion and 
diffusion of an initially point vortex in an arbitrary flow of a low 
viscosity fluid, are obtained. A model example is used to demonstrate 
the possibility of the occurrence of stochastic modes of motion of the 
vortex. 

A scheme due to Chorin has recently been finding favour when dealing numerically with the 
systems of point vortices in an ideal fluid. In the scheme the vortices move as if they were 
in an ideal fluid, and diffuse as if they were in a stationary viscous fluid (without taking 
into account the fact that in the latter case the flow would become vertical everywhere3 111. 
Attempts were made to justify such a scheme, even though they referred largely to the problem 
of choosing the best forms, in a certain sense, of approximating the vorticity /2/ and not to 
establishing the degree of approximation to the solutions in the exact formulation. An example 
is known /3/ of a scheme for computing the dynamics of a system of vortices in a low-viscosity 
fluid involving a description in terms of the distribution functions, realized numerically with 
help of a "viscous" random walk in the spirit of /I/. 

In the case when similar numerical experiments were aimed at, say, constructing a stat- 
istical flow chart /4-7/ where the question arises of the validity of using similar schemes to 
describe small-scale motions responsible for viscous dissipation, the problem of deriving a 
solution for the motion of the vortices based on an exact formulation within the framework of 
the Navier-Stokes equations, is quite important. 

Only two classical exact solutions of the Navier-Stokes equations of this type are known, 
which describe the diffusion of an initial point vortex and of a circular domain of constant 
vorticity. Attempts to construct approximate solutions describing the motion and diffusion 
of a vortex of small cross-section in a flow of viscous fluid have been few, and mostly of a 
qualitative character (e.g. the motion of a vortex pair l8f). Recently, examples have appeared 
of the determination of the evolution of finite vortex domains by integrating the Navier-Stokes 
equations numerically**.(**Getling A.V. On the interaction of vortices of finite dimension in 
a viscous fluid. Preprint No.87-016. Moscow, Scientific Research Institute, of Nuclear Physics, 
Moscow State Univ., 1987.) Such approaches are however procedurally difficult to apply to 
the problem formulated above. 

1. Let a point vortex of intensity I' appear at the instant t = 0 in an arbitrary 
plane unbounded flow of a viscous incompressible fluid with vorticity field 

The dynamics of the vorticity are described by the Helmholtz equation 
fto (a, y, t), t < 0. 

D (8) + ui’& -I- vQ, = 0, D E alat - VA (1.1) 

Let us represent, for t>O, the vorticity and velocity fields in the form u = u" + ~1, 
v = vo + ur, L;t = v, - my = @J + 8' (I', y', t), 5’ = 5 - x, y’=y - Y where X = X (t), Y = Y (t) is 
the trajectory of the centre of the vortex, determined by the condition for an extremum of the 
vorticity 

q (X, Y, t) iis i& = 0, Q, (X, Y, tf GE n, = 0 (W 

The perturbation in the main field connected with the presence of a vortex within the 
flow is described, as follows from (1.11, by the equation (here we have taken into account the 
fact that the main field satisfies the Helmholtz equation, and a dot denotes differentiation 
with respect to t) 

D’($F) + (u” + z&l - X.) St,,1 + (UO -t- u’ - y’) Q,.’ + u’61,@ 3 
V’P,” = 0. 

(1.3) 

with the initial condition 
SF (t = 0) = I% (I’) 6 (y’) (1.4) 

We shall assume that the viscosity % is low enough for the vortex to retain, within the 
characteristic'diffusion time 8,the fundamental part of the vorticity within the neighbourhood 
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of the point 5' = y' = 0 of size &=JGF, and we shall introduce the inner variables 
E-lx' 711 = e-ly', 'c = 8% 

E- 
In order to avoid bulky expressions, we shall also assume that 

charadteristic magnitudes of the basic flow are equal to unity. 
the 

By virtue of condition (1.4), which, in the new variables, takes the form 

Q’ (E, q, 7 = 0) = re-26 (5) 6 (q) 

we shall seek the inner solution of Eq.(1.3), with conditions (1.2), in the form of asymptotic 
expansions 

0' = E-’ (a; + EQ; ,- . .), U1 z &-I (Uol + &U: + . . .), x = x,, + 

EX1 + . . . 

Substitution of these expansions leads to the following equations and conditions in the 
first two approximations (the operator D is written in the variables &n): 

(2 - X,')s&$ +(v" - Ye') G&l = 0 

@'DQ,l + vn,,l + VQ,,' f (2 - X0')&' + (5" - Y;) PI,' = 0 

U= a11 (E + XI) + a12 (11 + Yd - X,' 

V= azl (5 + Xl) i- az2 (11 + YJ - Y,' 

L;lo$ (0, 0, T) E r&1 = 0, I&' = 0 

Q,' (ET 119 0) = lx (5) 6 (9) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

where ZZ = w (X0, Ye), a,,=GZxo, a,,=&,", a,,=GXO, a22=G'80 and a,, = -a,, by virtue of the 
equations of continuity. 

The solution of Eq.tl.5) is an arbitrary smooth function of the variable 5 = (P- Yo')E t 
w - Xi) '1, and in accordance with the boundary conditions (1.7) and (1.8) this is possible 
only when 

X"' = CO, Y,' = 50 (1.9) 

The relations obtained represent the equations of the trajectory of the vortex in the 
zeroth approximation. 

Let us change to the new variables 

T’ =T, 5’ = (I - A,,)E- A,,q - SU(O,O, t)dt 
0 

~‘=-A,,E+(l+A,,ill-S~(O,O,t,dt; A,j=Sa,jdt 
0 0 

in which Eq.(1.6) will become 

The above equation has a well-known solution satisfying condition (1.8) 

(1.10) 

Relations (1.7) mean that '&,I has an extremum at the point 5' = n' = 0, and this implies 
that U (0, 0, t) = 0, V (0, 0, t) := 0. The inner solution obtained using this approach must be 
matched with the corresponding outer solution /9/. Leaving aside the investigation of specific 
types of external field Q ( ,y,t,~) O x and therr properties as E--f 0, it is natural to make a 
fairly general assumption that for the asymptotic form e-+0 in the outer representation we 
have a corresponding inner limit limSP(eE,en, t,e) = 0 as e-+0. This satifies the 
requirement for matching the outer and inner expansions /9/, apart from exponentially small 
terms, since by virtue of (1.10) the outer limit lim W(a%r', e-ly’, t, e) = 0 as e-to. 

A similar class PO embraces the solutions which vary, as E --+ 0, at least not more 
slowly than o(e), and this is, generally speaking, a fairly weak requirement since the order 
of viscous terms in the equation for Q" is 0(~~). Thus the assumption discussed here makes 
it unnecessary, for a wide class of the outer flows, to have to construct a detailed asymptotic 
outer expansion to a first approximation. 

Thus the first approximation for the perturbation of the vortex trajectory is described 
by the system 



x,” - u (t) x, = 0, Y, = ala-1 (xl* - %1x,); (1.11) 

o 0) = err* + %&al 

At first sight, the "splitting" of the zeroth approximation (1.91, (1.10) obtained is in 
fact different from that of Chorin, irrespective of the outer matching. The trajectories 
are obtained by integrating the velocity fields of the main viscous flow, and the character- 
istics of the diffusion of vorticity are found to be connected with the characteristics of the 
main flow. However, in fact, when solutions for perturbed notion are obtained, the viscous 
properties of the basic flow field do not appear at all in the approximation discussed here 
and the situation does not change if we regard the main flow as inviscid and the viscosity as 
"appearing" in small scale phenomena of the order of E, since the viscous term in the Helnholtz 
equation is of the order of O(I?). Thus, if we regard the main flow in this sense as inviscid 
"almost everywhere", then the use of inviscid velocities in (1.9) will lead to an error not 
greater than 0 (Ed). If at the same time u", v" are such that Aij(t) are found to be suf- 
ficiently small, then the heuristic scheme of Chorin and the scheme (l-9), (1.101 following 
from the equations, will be similar. 

However, the fact that the perturbations of the trajectories of the order of E (1.11) 
exist within this approximation, makes all these "splittings" basically different. Taking 
into account such small scale dynamics may result in the discovery of new qualitative properties 
of the evolution of vortex systems with viscosity, such as, for example, the possible random- 
ization of the motion of an isolated vortex within the flow when it has well-defined character- 
istics. Below we shall discuss a model example as an illustration of this position. 

2. Let two point vortices of equal strength r appear at a distance 1 from each other at 
the instant t<o, in an unbounded viscous fluid which is at rest at t-o. 

We shall regard the velocity field due to one vortex, described by the classical solution 
for a fixed vortex in an unbounded viscous fluid as the external u",vo field for the other 
vortex, and vice versa. Such an approximation is found within the framework of the assumption 
used here of matching the inner and outer solutions, and makes it possible for the class Go 
containing terms exponential in E, to retain these terms in the initial approximation without 
altering the structure of the asymptotic expansions. Then the corresponding dynamic problem 
in the zeroth approximation (1.9) will be described by the system 

X,; == (Yo, - Yo,) G, Y,; L= -(X,, - X,,) G 

G= r -[I---XP(--$-)I, ~R,a2=(X01-XOp)~+f~OI-YDa)2 
X 02‘ = --x0;, Y,, = -Y*1 *, R,, (t = 0) = 1 

whose solution will be the trajectory 

Xol = 'I,1 cos wt = -X0,, Y,, = '/,I sin cot = -Y,, 

0 = 4~lnP 

Without pausing to analyse the law of diffusion in this approximation (l.lO), we shall 
consider the equation describing the perturbation of the trajectory X, from (l.ll), which can 
be transformed to the form (a prime denotes differentiation with respect to 2) 

X,” + [a (2) + 2q (2) cos 221 x, (2) = 0 

a (5) = -3.2-85 II + (VlpT; - I) e-61 e-~ 

4 (5) = 2+ I2 + ( f - 2) e-f - (5; - 6/J &.+L] 

g = alz, a = STfnv, z = 2ot 

(2.1) 

When the viscosity Y is sufficiently small, the characteristic scale of variation of s 
in the exponential term a, is.much larger than the period cos2z; therefore, the functions 

a (4 and (I (4 in the resulting equation vary slowly and can be regarded, within the 
framework of the qualitative analysis, as constant. In this case (2.1) will become the well- 
known Mathieu equation (see e.g. /10/l, about which we know, in particular, that its solutions 
describe, within the specified domains of variation of a and q, the phenomena of parametric 
excitation and resonance /ll/. 

We note that for the formal scheme of inviscid basic flow we have the corresponding case 
of a = 0, Q = z-7 (by making the change of variable z = 2' + H/2 we reduce Eq.(2.1) to its 
canonical form with a minus sign in front of q), and in the 6% Pf plane the corresponding 
point P which lies in the region of stable solutions between the neighbouring separatrices 

ff0 fd and 4 (9) (in the notation of /12/t, separating the region of stability from the regions 
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of exponentially increasing oscillations. Thus in the scheme without viscosity the perturbed 
motion is stable and is described by solutions of the form . . 
a periodic Nathieu function 

X, (2. a, 4) := ee%Il (2) 
Se% (L), CP& (%), x = t'o 

where a((~) is 
if 8 is a rational quotient, or a quasiperiodic 

Mathieu function fei_(z), ge;L(z), if 8 is an irrational number. However t 
in the immediate vicinity of the separatrix, 

since the point p lies 
the situation can change fundamentally for 

arbitrarily small Q, e.g. in the course of numerical computation. Indeed, the distance from 
the point P to a point lying on the separatrix n,(q) or b, (q) can be easily estimated for 
small q from the equation of the separatrix /lo, 121: a. (q) - --v2q2 -;- 
same manner). 

0 (pa) (and for b, in the 
It is now sufficient to introduce into the scheme errors in the value of a of 

the order of 2-X5 to arrive at the region of instability either below 
depending on the sign of the error. 

a, (ri) or above la, (ri) I 
Besides, 

which is outside the scope of this paper. 
the situation may require a more accurate analysis, 

When the viscosity is not zero, then, irrespective of the fact that the quantity a is dif- 
fzr:nt from zero teven if it is small for sufficiently large a), the position for whichIa,(q)/> 
,*'i is attained at finite, though fairly large values of s (the graph of f (2) = a (2)/a,, 
a m = -3.794' is shown in the figure). 

In this case the solution of Eq.(2.1) will have the farm X, = C&@@(z), p>O where n 
is the characteristic index the method of determining which is well-known /lo/, and iD is a, 
generally speaking, quasiperiodic function of the type described above. 

If we choose, say, r = 

description. 
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1, Y = 10-4, then the value of z at which the mode of unstable 
oscillations with exponentially increasing amplitude is reached 
is of the order of 103, and this corresponds in real time to 
about ten rotations of the system of vortices. This time will 
increase as Y decreases. 

The presence of a local exponential instability in Hamiltonian 
systems with parametric excitation of the type (2.11, ensures the 
stochastic character of the behaviour of the solution /ll/. Systems 
of the more general type (1.11) will, in all likelihood, also 
contain a mechanism for the randomization of the solutions, at 
least under the condition that the function o(1) is periodic or 
quasiperiodic. This can occur in problems of the dynamics of 
systems of initially point vortices in a viscous fluid, in flows 
with rotations or oscillations of the stream, and in other similar 
flows. 

We suggest that the discovery of such a mechanism offers the 
chance of a fresh look at the heuristic introduction of artificial 
randomization of trajectories in the course of carrying out 
numerical experiments with systems of point vortices in an ideal 
fluid (see e.g. 1131 and the references given there) which obtains 
a specific argumentation within the framework of a deterministic 

Stepanov for his interest. 
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COMPUTATION OF ATTACHED FLOW PAST AN AIRFOIL PROFILE AT HIGH REYNOLDS NUMBERS* 

S.A. VELICHKO and YU.B. LIFSHITZ 

A mathematical model of an attached flow of an incompressible fluid past 
an airfoil profile at high Reynolds numbers is proposed. The model 
enables one to determrne the effect of vrscosrty on the magnitude of 
aerodynamic characteristics. Not only is the displacing action of the 
turbulent boundary layer and wake on the external flow taken into 
account, but the solution in the neighbourhood of the trailing edge is 
also studied, and this makes it possible to formulate a more accurate 
analogue of the Chaplygin-Zhukovskii condition. Comparison of numerical 
results with experimental data shows that the accuracy of the results is 
comparable with that of experiment. The flow past a profile is usually 
computed by solving a sequence of problems arising when the concept of 
the Prandtl boundary layer is applied regularly. In this approach the 
external problems describe the flow of an inviscid fluid past 
modifications of the profile, which take into account the displacement 
of the boundary layer and distortion of the wake. Their unique solution 
satisfies the additional demand of regularity. To a first approximation 
such a demand is represented by the Chaplygin-Zhukovskii condition. To 
a second approximation the condition is obtained by analysing the 
solution of the Navier-Stokes equations near the trailing edge of the 
profile. In the present paper the analysis is carried out for a profile 
with a sharp trailing edge, in which the angle between the tangents is 
not zero. 

1. Let us consider the flow of an incompressible fluid past an airfoil profile. We shall 
regard the segment of the straight line between the leading and trailing edge of length L as 
the chord of the profile, and the angle a between the direction of the velocity at infinity 

u, and the chord, as the angle of attack. We shall refer all linear parameters to L, the 
velocity to U,, and the pressure p to the square of the pressure head pLJwa where p is 
the density of the fluid. We shall place the origin of a Cartesian coordinate system xy at 
the trailing edge of the profile, and direct the x axis along the bisector of the anglei (8< 
1) within it. 

We shall consider the solution of the problem of the flow of an ideal incompressible fluid 
past a profile in the plane 6 = rexp (io). The outside of the profile will map onto the 
outside of the unit circle / 5 I= 1 in this plane, and the trailing edge of the profile will 
correspond to the point 5=1. 

We can assume, without loss of generality, that such a mapping can be carried out using 
the method described in /I/. We shall use the Karman-Trefftz transformation 

(E - Eo)/(5 + 50) = [(z - so - k,E,)l(z - 20 -+- kr$,)]"Q, k, = 2 - o/z 

to map the profile onto the part of the plane bounded by an almost spherical contour. After 
this we will seek the coefficients Aj and BJ of the Theodorsen-Garrick transformation 


